If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2=70
We move all terms to the left:
3w^2-(70)=0
a = 3; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·3·(-70)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{210}}{2*3}=\frac{0-2\sqrt{210}}{6} =-\frac{2\sqrt{210}}{6} =-\frac{\sqrt{210}}{3} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{210}}{2*3}=\frac{0+2\sqrt{210}}{6} =\frac{2\sqrt{210}}{6} =\frac{\sqrt{210}}{3} $
| F(x)=1.2(3.6)^x+1 | | 60+30=70x | | 5x^2-12x-50=0 | | 3(x-15)=12 | | X+7=2(x-5) | | 10x+5(x+6)+25(2x)=485 | | 4=10v−6 | | 8b+1=81 | | -22/(x-4)=-11/x | | -2(10x-15)=1.5(-40x+60) | | 7/6n+1/2n=5 | | 0.5(5t-5)=(t+5)/4 | | 2-16t=6(4 | | x+5+4x=55 | | .10x+.05(x+6)+.25(2x)=4.8565x+30=485 | | -2t^2+3t+10=0 | | 6x-49=5x-27 | | .10x+.05(x+6)+.25(2x)=4.85 | | 2x^=11x+40 | | 84=7x+4x+7 | | 0.75(60x-18)=1.5(8-16x) | | Y=0.60x+50 | | 0.75(60x-18=1.5(8-16x | | 3x(x-2)+5=2x | | 2/1/4x=-9 | | 3n2+237n-4590=0 | | 21/4x=9- | | 0.5x+0.75=0.87 | | 3x^2+12x+13=(2x+5)(2x+5) | | 85x+83=91x-283 | | .10x+.25(x+4)=1.7010x+25(x+4)=17010x+25x+100=17035x+100=17035x=70x=2 | | 26z=-910 |